

Key: Major Clusters; Supporting Clusters and Additional Clusters

LAUSD Secondary Mathematics

Accelerated Grade 7 – UNIT 1 Rational Numbers and Exponents

Students develop a unified understanding of number, recognizing fractions, decimals (that have a finite or a repeating decimal representation), and percents as different representations of rational numbers. Students extend addition, subtraction, multiplication, and division to all rational numbers, maintaining the properties of operations and the relationships between addition and subtraction, and multiplication and division. By applying these properties, and by viewing negative numbers in terms of everyday contexts (e.g., amounts owed or temperatures below zero), students explain and interpret the rules for adding, subtracting, multiplying, and dividing with negative numbers. They use the arithmetic of rational numbers as they formulate expressions and equations in one variable and use these equations to solve problems. They extend their mastery of the properties of operations to develop an understanding of integer exponents, and to work with numbers written in scientific notation

CLUSTERS	COMMON CORE STATE STANDARDS	
Apply and extend previous understandings of operations	7.NS.1 Apply and extend previous understandings of addition and subtraction to	
with fractions to add, subtract, multiply, and divide rational	add and subtract rational numbers; represent addition and subtraction on a	
numbers.	horizontal or vertical number line diagram.	
	a. Describe situations in which opposite quantities combine to make 0. For	
	example, a hydrogen atom has 0 charge because its two constituents are	
	oppositely charged.	
	b. Understand p+q as the number located a distance from p, in the positive or	
	negative direction depending on whether q is positive or negative. Show that a	
	number and its opposite have a sum of 0 (are additive inverses). Interpret sums of	
	rational numbers by describing real-world contexts.	
	c. Understand subtraction of rational numbers as adding the additive inverse, p-	
	q=p+(-q). Show that the distance between two rational numbers on the number	
	line is the absolute value of their difference, and apply this principle in real-world	
	contexts.	
	d. Apply properties of operations as strategies to add and subtract rational	
	numbers.	
	7.NS.2 Apply and extend previous understanding of multiplication and division	
	and of fractions to multiply and divide rational numbers.	
	e. Understand that multiplication is extended from fractions to rational numbers by	
	requiring that operations continue to satisfy the properties of operations,	
	particularly the distributive property, leading to products such as (-1)(-1)=1 and the	
	rules for multiplying signed numbers. Interpret products of rational numbers by	
	describing real-world contexts.	
	t. Understand that integers can be divided, provided that the divisor is not zero,	
	and every quotient of integers (with non-zero divisor) is a rational number. If p and	
	q are integers, then –(p/q)=(-p/q)=(p/-q). Interpret quotients of rational numbers by	

	 describing real-world contexts. g. Apply properties of operations as strategies to multiply and divide rational numbers. h. Convert a rational number to a decimal using long division; know that the decimal from of a rational number terminates in 0s or eventually repeats. 7.NS.3 Solve real-world and mathematical problems involving the four operations with rational numbers.
Know that there are numbers that are not rational, and approximate them by rational numbers.	8.NS.1 . Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. 8.NS.2 . Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g.,). For example, by truncating the decimal expansion of $$, show that $$ is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
Work with radicals and integer exponents.	8.EE.1 Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, $3^2 \times 3^{-5} = 3^{-3} = 1/3^3 = 1/27$. 8.EE.2 Use square root and cube root symbols to represent solutions to equations of the form $x^e = p$ and $x^a = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational. 8.EE.3 Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3×10^8 and the population of the world as 7×10^9 , and determine that the world population is more than 20 times larger. 8.EE.4 Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.

	MATHEMATICAL PRACTICES	LEARNING PROGRESSIONS	
1.	Make sense of problems and persevere	http://commoncoretools.files.wordpress.com/2012/02/ccss_progression_nf_35_2011_08_12.pdf	
	in solving them.		
2.	Reason abstractly and quantitatively.	This cluster builds upon the understandings of rational numbers in Grade 6:	
3.	Construct viable arguments and	 quantities can be shown using + or – as having opposite directions or values, 	
	critique the arguments of others.	 points on a number line show distance and direction, 	
4.	Model with mathematics.	 opposite signs of numbers indicate locations on opposite sides of 0 on the number line, 	
5.	Use appropriate tools strategically.	 the opposite of an opposite is the number itself, 	
6.	Attend to precision.	• the absolute value of a rational number is its distance from 0 on the number line,	
7.	Look for and make use of structure.	 the absolute value is the magnitude for a positive or negative quantity, and 	
8.	Look for and express regularity in	 locating and comparing locations on a coordinate grid by using negative and positive 	
	repeated reasoning.	numbers.	
		Learning now moves to exploring and ultimately formalizing rules for operations (addition, subtraction, multiplication and division) with integers. Using both contextual and numerical problems, students should explore what happens when negatives and positives are combined. Number lines present a visual image for students to	
		explore and record addition and subtraction results.	
		Students should be able to give contextual examples of integer operations, write and solve equations for real- world problems and explain how the properties of operations apply. Real-world situations could include: profit/loss, money, weight, sea level, debit/credit, football yardage, etc.	
		http://ime.math.arizona.edu/progressions/#committee.	
		CDE Progress to Algebra continuum K-8 www.cde.ca.gov/be/cc/cd/documents/updateditem12catt3.doc	

¹ Major Clusters – area of intensive focus where students need fluent understanding and application of the core concepts.

² Supporting/Additional Clusters – designed to support and strengthen areas of major emphasis/expose students to other subjects.

ENDURING UNDERSTANDINGS		ESSENTIAL QUESTIONS	KEY VOCABULARY	
•	Computation with positive and negative	When should we use additive inverse or	absolute Value	
	numbers is often necessary to determine	multiplicative inverse?	additive Inverse	
	relationships between quantities.	 How do we use a number line to show 	approximate	
٠	Models, diagrams, manipulatives, number	addition and subtraction of rational	 associative Property 	
	lines, and patterns are useful in developing	numbers?	 benchmark 	
	and remembering algorithms for computing	What is the result of (what happens when)	 commutative Property 	
_	With positive and negative numbers.	adding a number and its inverse or	converse	
•	Properties of real numbers hold for all	How is the identity related to its inverse?	 cube root, cubic root 	
	Positive and pogetive numbers are often	How is the identity related to its inverses?	distance	
•	used to solve problems in everyday life	 What is the relationship between addition and subtraction? 	 distributive Property 	
•	Students approximate irrational numbers	What is the relationship between	divisor	
•	using their understanding of square and cube	multiplication and division?	equation	
	roots.	 How are the operations applied in real-world 	equivalent	
•	Students extend their understanding of the	contexts?	• estimate	
	number system by investigating the	 How do the properties of operation help us 	• exponent	
	relationship between the sides of a right	compute with rational numbers?	• expression	
	triangle.	 Is it always true that multiplying a negative 	• factor	
•	Students create equivalent expressions using	factor by a positive factor always produces a	nypotenuse	
	integer exponents.	negative product?	• Integer	
٠	Students apply their understanding of	 How are rational and irrational numbers 	• Integers	
	exponents to express and compare numbers.	related?		
٠	Students understand irrational numbers and	 How can lengths and distances be 		
	when to use them in solving problems.	expressed – exactly or approximately –	multiplicative inverse	
		using understanding of square roots?	opposite product	
		What real world problems does the	 product Dythagoroan Theorem 	
		Pythagorean Theorem allow us to solve?		
		How do we determine whether two		
		expressions involving exponents are		
		equivalent?	rational Numbers	
		numbers using exponential (scientific)	 reneating Decimal 	
		notation?	scientific notation	
		How can you investigate the relationships		
		between rational and irrational numbers?	square root	
			terminating decimal	

	• zero	Pair
RESOURCES	INSTRUCTIONAL STRATEGIES	ASSESSMENT
NLVM http://nlvm.usu.edu	Number line model for operation with integers	SBAC -
NCTM Illuminations activities	• Use of chips model (positive/negative numbers) for	http://www.smarterbalanced.org
7.NS.3 Comparing Freezing Points	creating 0-pairs.	/ Item #'s Items: 2959, 43022,
http://www.illustrativemathematics.org/illustrations/3	Use a foldable for integer rules.	43023, 43026, 43047, 43053
14	 Show that la+bl ≠ lal + lbl 	
7.NS.1a Distances on the Number Line 2	Introduce this concept using a concrete model	SBAC -
http://www.illustrativemathematics.org/illustrations/3	such as manipulative or have students draw a right	http://www.smarterbalanced.org
<u>10</u>	triangle with sides 3, 4, and 5 units. Then have	/
7.NS.3 Operations on the number line	them draw a square of the above dimensions at	ITEM #'S 42906 8 NS1-2, 8 EE
http://www.illustrativemathematics.org/illustrations/4	each side of the right triangle.	1-2
<u>6</u>	Have students verify using a model, that the sum	
California Draft Mathematics Framework:	of the squares of the leas is equal to the square of	SBAC Sample Items:
http://www.cde.ca.gov/be/cc/cd/draftmathfwchapters	the hypotenuse in a right triangle.	8 EE 1
<u>.asp</u> .	 Students should also understand that if the sum of 	MAT.08.SR.1.000EE.B.203
LAUSD Adopted Textbooks:	the squares of the 2 smaller leas of a triangle is	8 EE 2
California Mathematics: Concepts Skills and	equal to the square of the third leg, then the	MAT.08.TE.1.000EE.B.144
Problem Solving, Glencoe McGraw-Hill	triangle is a right triangle.	MAT.08.TE.1.000EE.B.323
2.1 Rational Numbers	Engage students to have authentic experiences	
2.3 Multiplying Positive and Negative Fractions	and exploration which would enable them to use	SBAC Content Specs:
2.4 Dividing Positive and Negative Fractions	the Pythagorean Theorem to solve problems.	
2.5 Adding and Subtracting Like Fractions	Students can use graphic organizers to show the	http://www.smarterbalanced.org
2.6 Adding and Subtracting Unlike Fractions	relationship between the subsets of the real	/wordpress/wp-
California Math: Course 2 - McDougal Litteli	number system.	content/uploads/2011/12/Math-
2.1 Simplifying Fractions		Content-Specifications.pdf
2.2 Comparing Fractions and Mixed Numbers		
2.3 Adding and Subtracting Fractions		8 G 7: CR 5: Jane's IV
2.4 Using a Common Denominator		PARCC
2.5 Multiplying Fractions		
2.0 Dividing Flactions		MAP Center
2.7 Rational Numbers in Decimal Form		ONC OFF MAD Contor Chart
Decimals "		
bttn://man.mathshell.org/materials/lessons.nbn?task		NUVICE
i d=4218 subpage=concept		Assessment Tasks,
<u>ru-+2rasubpage-concept</u>		nup.//map.mainsnell.org/materi
		ais/tasks.pnp?taskid=398#task3

	Real Numbers	<u>98</u>	
8EE.1: Illustrative Mathematics, "Extending the Definition of Exponents," <u>http://s3.amazonaws.com/illustrativemathematics/illu</u> <u>stration_pdfs/000/000/395/original/illustrative_mathematics_395.pdf?1343857080</u> Engage New York: <u>Grade 8 Module 1</u> Integer Exponents and Scientific Notation	All real numbers are either rational or irrational Rational Integers Whole Natural Students can approximate square roots by iterative processes. Have students to recognize that falls between 2 ₂ = 4 and 3 ₂ = 9. The value will be closer to 2 than to 3	8 EE: MAP Center, Summative Assessment Tasks: "100 People" <u>http://map.mathshell.org/materials/download.php?fileid=1046</u>	
	LANGUAGE GOALS		
Students will describe situations in which opposite quantities will combine to make 0 or 1. <i>Example</i> : To add -5 and 5, I The resulting sum will be, because			
Students will explain how they will use the properties of operations to compute with rational numbers. <i>Example</i> : In performing operations with rational numbers, I will			
Students will create/write real-world problems representing operations with rational numbers. <i>Example</i> : If the temperature is 40 ₀ F in the morning and increases by 10 ₀ F by noon, the new temperature will be			
Students will summarize the steps in approximating irrational numbers using the square and cube roots. <i>Example Stem:</i> Irrational numbers are An example of an irrational number is It is an irrational number because			
Students will use comparative adjectives to compare, explain and justify solutions. (i.e. This exponent is greater than because)			
Students will compare and contrast rational and irrational numbers. <i>Example</i> : The difference between a rational and irrational number is			
MATHEMATICS ASSESSMENTS PROJECT	PERFORMANCE TASKS		
7. NS.1 and 7.NS.3 Using Positive and Negative Numbers in Context			
nttp://map.mathshell.org/materials/lessons.php?taskic	1=453#task453		
LAUSD Secondary Mathematics	June	e 10, 2014 Draft Page 10	

7NS.2 and 7.NS.3 Increasing and Decreasing Quantities by a Percent http://map.mathshell.org/materials/lessons.php?taskid=210#task210 8.EE: MAP Center Concept Lesson, "Solving Real-Life Problems: Baseball Jerseys," http://map.mathshell.org/materials/download.php?fileid=1265 8.EE.4: MAP Center Concept Lesson, "Estimating Length Using Scientific Notation," http://map.mathshell.org/materials/lessons.php?taskid=414&subpage=concept

	FRONT LOADING		INTERVENTION	
•	Have students construct number lines and show how they would get zero by determining how many points they would move from point 3 to 6 and back. Use the amount they owe their friend to show that when they pay the debt, that there will be zero	 Show students on a number line that the absolute value of a and absolute value of b will equal the magnitude of a and b a + b = a + b Have students prove the following: Are there any rectangles whose area and perimeter have the same numerical value? Can you write 1/2 as the sum of two "unit fractions"? 1/2= 1/a + 1/b. Have students write multiplication problem or fraction division problem that can be modeled using area or linear model. Provide students with opportunities to be recognized for their previous knowledge and to be allowed to avoid redundant learning by being 	 Use manipulative to reteach integers such as using red and blue chips. Provide number line strips to pairs of students and give them different integer problems. Show students how to solve problems involving fractions with unlike 	
•	amount left. Explain absolute value by using the distant they travel to school each way (to and fro). That distance is always positive.	 encouraged to learn the sophisticated and advanced information and skills of the curriculum or related curriculums at their own rate. This also includes the opportunity for students to make personal meaning of the lesson. For example: Expressions and Equations: Students apply their math knowledge of scientific potation and choose 	 denominators using a picture. Have them solve it using numbers and words. Use Algebra tiles and fraction bars to reinforce 	
•	Introduce integer concept using chips, manipulatives, number line or modeling virtually.	appropriate size for measurements depending on quantity to determine such thing as measuring the volume of air a person breaths in a day, week, year, and lifetime given a rate. Bridging from 8 NS 1, 8 NS 2 to the related HS N-RNL	 Small teacher to student ratio discussion – have students observe a micro- 	
•	Students have an understanding of whole number powers of 10 with exponential notation.	Rational and Irrational Numbers 1, Concept Lesson <u>http://map.mathshell.org/materials/lessons.php?taskid=424&subpage=concept</u> Rational and Irrational Numbers 2, Concept Lesson <u>http://map.mathshell.org/materials/lessons.php?taskid=434&subpage=concept</u>	organism and discuss such things as area, volume and rate but on a much smaller scale, thus having a need for	
•	understanding of the meaning of multiplication and further develop whole number power of 10 to		exponential notation.Emphasize think-pair- share.Provide multiple	

LAUSD Secondary Mathematics

References:

1. National Governors Association Center for Best Practices, Council of Chief State School Officers. (2010). *Common Core State Standards (Mathematics)*. Washington D.C.: National Governors Association Center for Best Practices, Council of Chief State School Officers.

2. McCallum, W., Zimba, J., Daro, P. (2011, December 26 Draft). *Progressions for the Common Core State Standards in Mathematics*. Cathy Kessel (Ed.). Retrieved from <u>http://ime.math.arizona.edu/progressions/#committee</u>.

3. Engage NY. (2012). New York Common Core Mathematics Curriculum. Retrieved from http://engageny.org/sites/default/files/resource/attachments/a-story-of-ratios-a-curriculum-overview-for-grades-6-8.pdf.

4. Mathematics Assessment Resource Service, University of Nottingham. (2007 - 2012). Mathematics Assessment Project. Retrieved from http://map.mathshell.org/materials/index.php.

5. Smarter Balanced Assessment Consortium. (2012). Smarter Balanced Assessments. Retrieved from http://www.smarterbalanced.org/.

6. Partnership for Assessment of Readiness for College and Career. (2012). PARCC Assessments. Retrieved from http://www.parcconline.org/parcc-assessment.

7. Institute for Mathematics & Education (2013). Illustrative Mathematics. Retrieved from http://www.illustrativemathematics.org/

8. California Department of Education. (2013). Draft Mathematics Framework Chapters. Retrieved from http://www.cde.ca.gov/be/cc/cd/draftmathfwchapters.asp.

9. National Council of Teachers of Mathematics (NCTM) Illuminations. (2013). Retrieved from <u>http://illuminations.nctm.org/Weblinks.aspx</u>.
 10. The University of Arizona. (2011-12). Progressions Documents for the Common Core Math Standards. Retrieved from <u>http://ime.math.arizona.edu/progressions</u>.